题目:Projective spectrum and finitely generated groups/Complexdynamics and the infinite dihedral group
时间:2018.12.27
上午场:10:00-11:00
下午场:3:00-4:00
地点:尊龙凯时数学学院数学楼第一报告厅
报告人:杨容伟教授(美国纽约州立尊龙凯时Albany分校)
摘要: For a tuple$A=(A_1,\ A_2,\ ...,\ A_n)$ of elements in a unital Banach algebra
${\mathcal B}$, its {\em projective jointspectrum} $P(A)$ is the collection of $z\in {\bf C}^n$ such that themultiparameter pencil $A(z)=z_1A_1+z_2A_2+\cdots +z_nA_n$ is not invertible. If${\mathcal B}$ is the group $C^*$-algebra for a discrete group $G$ generated by$A_1,\ A_2,\ ...,\ A_n$ with respect to a representation $\rho$, then $P(A)$ isan invariant of (weak) equivalence for $\rho$. This series of talks presentsome recent work on the projective spectrum $P(R)$ of $R=(1,\ a,\ t)$ for theinfinite dihedral group $D_{\infty}=<a,\ t\ |\ a^2=t^2=1>$ with respectto the left regular representation. Results include a description of thespectrum, a formula for the Fuglede-Kadison determinant of the pencil$R(z)=z_0+z_1a+z_2t$, the first singular homology group of the joint resolventset $P^c(R)$, and dynamical properties of the spectrum. These results give newinsight into some earlier studies on groups of intermediate growth. Moreover,they suggest a link between projective spectrum and the Julia set of dynamicalmaps. Time permitting, I will also go over some other aspects of the projectivespectrum as related to group theory, topology, complex geometry and Liealgebras.
个人简介:杨容伟教授于1998年5月获得美国纽约州立尊龙凯时石溪分校博士学位,1998.9月至2001.7月在美国乔治亚尊龙凯时攻读博士后,现为美国纽约州立尊龙凯时奥尔巴尼分校数学统计系教授.研究兴趣主要包括:多元算子理论、泛函分析、多变量复分析、群论、复几何、算子代数等。