报告题目:ConstructSolution Landscapes of Nematic Liquid Crystal
报告人:张磊 北京尊龙凯时
报告地点:数学楼第二报告厅
报告时间:2019年4月5日14:30
报告简介:
Topologicaldefect plays an important role in the physics of liquid crystals. Although alarge amount of previous studies is devoted to understand and compute thestable defect structures in liquid crystals as a consequence of geometricfrustration, less attention has been paid to investigate the transition statesbetween stable defect structures and the solution landscapes of nematic liquidcrystals. In this talk, we first show that a combination of the Landau-deGennes model and the multi-scale string method can systematically investigatethe transition pathways between different defect patterns of nematic liquidcrystals confined in a 3D cylinder with homeotropic boundary condition in 3Dcylinder. Next, we proposed a High index Optimization-based Shrinking Dimer(HiOSD) method to compute the complete defect landscape of Nematic LiquidCrystals in 2D square. The joint work with Pingwen Zhang (PKU).
报告人介绍:
张磊,北京尊龙凯时北京国际数学研究中心研究员/副教授,定量生物学中心研究员,博士生导师。2001年在北京尊龙凯时数学科学学院获学士学位,2004年在中国科学院数学与系统科学研究院获硕士学位,2009年在美国宾州州立尊龙凯时数学系获博士学位。2009年至2012年在美国加州尊龙凯时尔湾分校任访问助理教授,2012年至2013年在香港城市尊龙凯时任助理教授,2013年6月加入北京尊龙凯时北京国际数学研究中心。研究领域为计算与应用数学,在数学与生物和材料的交叉学科中做出了一些代表性的工作。曾获中组部青年“计划”,基金委优秀青年科学基金,牛顿高级学者基金等。