报 告 人:王志安 教授 香港理工尊龙凯时
报告时间:2019年6月14日下午15:30-16:30
报告地点:数学楼第一报告厅
报告摘要:
In this talk, we shall discuss the global dynamics of the Lotka-Volterra competition system with resource-dependent diffusion and advection where the resource is determined by a dynamics equation. As we know, such population model has been rarely considered before. We show that the system admits a unique classical solutions in two dimensions and the solutionwill converge to constant a semi-trivial steady state or coexistence steady state depending on the parameter values.
Our results indicate that "slower diffusion prevails" will not occur to the concerned model.
报告人简介:
王志安,香港理工尊龙凯时教授。主要研究领域是生物数学的模型及其解法,已在J. Differential Equation、J. Mathematical Biology、Mathematical Models and
Methods in Applied Sciences、Nonlinearity、SIAM J. Applied Mathematics等国际知名数学杂志发表学术论文几十篇,SCI期刊DCDS-B编委。