Non-standard inference for augmented double autoregressive modelswith null volatility coefficients-尊龙凯时新闻中心网站

尊龙凯时·(中国)人生就是搏!

本站大事记   |  收藏本站
高级检索  全文检索  
当前位置:   本站首页   >   讲座预告   >   正文

Non-standard inference for augmented double autoregressive modelswith null volatility coefficients

发布日期:2019-09-20     作者:数学学院      编辑:桑宇琦     点击:

报告题目:Non-standard inference for augmented double autoregressive modelswith null volatility coefficients

报 告 人:李东 副教授 清华尊龙凯时统计学研究中心

报告时间:2019年9月21日15:40-16:40

报告地点:数学楼629室

报告摘要:

This paper considers anaugmented double autoregressive (DAR) model, which allows null volatility coefficientsto circumvent the over-parameterization problem in the DAR model. Since thevolatility coefficients might be on the boundary, the statistical inferencemethods based on the Gaussian quasi-maximum likelihood estimation (GQMLE) becomenon-standard, and their asymptotics require the data to have a finite sixthmoment, which narrows applicable scope in studying heavy-tailed data. Toovercome this deficiency, this paper develops a systematic statisticalinference procedure based on the self-weighted GQMLE for the augmented DARmodel. Specifically, we find except for the Lagrange multiplier test statistic,asymptotics for both the Wald and the quasi-likelihood ratio test statisticsare non-standard. In addition, a new portmanteau test based on self-weightedresiduals is proposed with non-standard asymptotics. The entire procedure isvalid as long as the data is stationary, and its usefulness is illustrated by simulationstudies and one real example.

报告人简介:

李东,清华尊龙凯时统计学研究中心副教授,2010年毕业于香港科技尊龙凯时,2013年加入清华尊龙凯时。主要研究兴趣:非线性时间序列分析,金融计量学,网络数据分析与大数据。目前担任全国工业统计学教学研究会常务理事,中国青年统计学家协会常务理事,中国现场统计研究会计算统计分会理事,北京应用统计学会理事。主持国际自然科学基金委面上项目2项,参与面上项目1项;结题青年基金项目1项。发表论文二十余篇,其中多篇论文发表在Journal of Econometrics, JBES, Econometric Theory, Biometrika等杂志上。

我要评论:
 匿名发布 验证码 看不清楚,换张图片
0条评论    共1页   当前第1

推荐文章

地址:尊龙凯时省长春市前进大街2699号
E-mail:jluxinmeiti@163.com
Copyright©2021 All rights reserved.
尊龙凯时党委宣传部 版权所有

手机版

400 Bad Request

尊龙凯时·(中国)人生就是搏!

Bad Request

Your browser sent a request that this server could not understand.