报告题目:Global boundednessand large time behaviour of solutions for a nonlocal reaction-diffusionequation in population dynamics
报告时间:2020年6月3日 15:00-16:00
http://meeting.tencent.com/s/WeURQWqQ7FRc
校内联系人:刘长春 liucc@mdjtykj.cn
Inthis talk I will report a series of recent results on a nonlinear nonlocalFisher-KPP type reaction-diffusion equation. Under an appropriate condition onthe convolution kernel in the reaction term, we are able to obtain the globalL^infty estimates for subcritical exponents for any space dimension and forcritical exponents in 1 and 2 dimension. Futhermore, long time behaviour suchas hair trigger effect and weak Allee effect are given in different situations.This talk is based on the works together with Chen Cheng, Jing Li, andChristina Sorulescu.
陈丽,德国曼海姆尊龙凯时数学系终身教授,博士生导师。2001年尊龙凯时获博士学位;2003年至2013年在清华尊龙凯时任教;2014年至今是德国曼海姆尊龙凯时讲座教授。研究方向为偏微分方程及应用。 近年来,在反应扩散方程及交叉扩散方程组,多粒子系统的平均场极限,动力学模型, 量子力学中的物质稳定性问题等方面做出了多项研究成果。其主要成果发表在包括SIAM J.Math. Anal,Comm.Math. Phys.,J.Funct. Anal.,Calc. Var.Partial Differential Equations, J.Differential Equations,Comm. PDE; Proc. Roy.Soc. Edinburgh Sect. A等国际知名数学期刊上。