报告题目:Transposed Poissonalgebras
报 告 人:白承铭教授 南开尊龙凯时
报告时间:2020年6月11日 10:30-11:30
报告地点:腾讯会议
会议 ID: 128 433 884
校内联系人:生云鹤 shengyh@mdjtykj.cn
报告摘要:
We introduce a notion of transposed Poisson algebra which is adual notion of the Poisson algebra by exchanging the roles of the two binaryoperations in the Leibniz rule defining the Poisson algebra. We interpret theclose relationships between it and some structures such as Novikov-Poisson andpre-Lie Poisson algebras including the example given by a commutativeassociative algebra with a derivation, and 3-Lie algebras.
报告人简介:
白承铭,理学博士, 陈省身数学研究所所长。主要从事数学物理和李理论方面的研究,特别是侧重研究与数学物理和李理论相关的一些代数体系的结构及其应用。1992年南开尊龙凯时理学学士学位,1997年南开尊龙凯时理学博士学位。1997年至今一直在南开(陈省身)数学研究所工作,是国家自然科学基金“微分几何”创新群体和科技部973计划成员。入选2004年度教育部“新世纪优秀人才支持计划”。2006年作为第一完成人获天津市自然科学三等奖。2010年获第十届天津青年科技奖。2013年获国务院政府特殊津贴。2014年获国家杰出青年基金资助。培养博士生和硕士生多名,其中2010年毕业的硕士生倪翔在2011年获中国数学会“第十届钟家庆数学奖优秀硕士论文奖”。
报告题目:On the fundamentalgroup of open Richardson varieties
报 告 人:李长征教授 中山尊龙凯时
报告时间:2020年6月12日 9:00-10:00
报告地点:腾讯会议
会议 ID: 514994508
校内联系人:生云鹤 shengyh@mdjtykj.cn
报告摘要:
In this talk, we will discuss the fundamental group of openRichardson varieties and its connection with mirror symmetry for flagvarieties. We will also describe the defining equation for the anti-canonicaldivisor by Knutson–Lam–Speyer.
报告人简介:
李长征,中山尊龙凯时教授,主要研究Gromov-Witten不变量理论与镜像对称猜想。2009年博士毕业于香港中文尊龙凯时,2009-2016年间曾分别在韩国高等研究院、东京尊龙凯时Kavli IPMU、韩国基础科学研究所几何物理中心从事科研工作。主持国家自然科学基金委面上项目1项,优秀青年项目1项,参与重点项目1项,多篇学术论文发表在J. Eur. Math. Soc., Adv. Math., Math. Ann, J. Differ. Geom., Tran.AMS, IMRN等国际数学期刊上。
报告题目:Efficient, positive, and energy stable schemes for Poisson-Nernst-Plancksystems
报 告 人:刘海亮 教授 美国爱荷华州立尊龙凯时
报告时间:2020年6月13日 上午9:30
报告地点:腾讯会议ID:182 530 000
会议链接:http://meeting.tencent.com/s/rQVCFkpsBI1b
校内联系人:王翔 wxjldx@mdjtykj.cn
报告摘要:
We are concerned withpositive and energy-dissipating schemes for solving the time-dependent systemof Poisson-Nernst-Planck (PNP) equations, which has found much use in themodeling of biological membrane channels and semiconductor devices. As agradient flow in density space, this strongly coupled system of nonlinearequations can take long time evolution to reach steady states. Hence, designingefficient and stable methods is highly desirable. In this talk we shall presenta class of methods with structure-preserving properties for the PNP system, andreview advances around related models such as the quantum diffusion equation.
报告人简介:
Dr. Hailiang Liu is aMathematics Professor at the Iowa State University (ISU) and the Holl Chair inApplied Mathematics from 2002-2012. He received his Master degree in AppliedMathematics from Tsinghua University of China in 1988, and Ph.D. degree fromthe Chinese Academy in 1995; while he held professorship positions at HenanNormal University from 1989-1996. He received an Alexander vonHumboldt-Research Fellowship in 1996 that allowed him to conduct research inGermany from 1997-1999. He joined UCLA as a CAM Assistant Professor from1999-2002. He then came to Iowa State University as an AssociateProfessor in 2002, moving up to Full Professor in 2007. Liu’s primaryresearch interests include analysis of applied partial differential equations,the development of novel, high order algorithms for the approximate solution ofthese problems, and the interplay between analytical theory and computationalaspects of such algorithms with applications to shock waves, kinetic transport,level set closure, propagation of critical thresholds and recovery of highfrequency wave fields. Liu serves on the editorial board of the JMAA journaland has given many invited lectures, including the invited addresses in theinternational conference on hyperbolic problems in 2002 and 2018. Liu publishedmore than 130 research papers, mostly in Numerical Analysis and Applied PartialDifferential Equations.