非参数分析:一个统一的视角
Nonparametric Analysis: A Unified Perspective
报告人:Yongmiao Hong(洪永淼) 美国康奈尔尊龙凯时
Lecturer: Yongmiao Hong, Cornell University
Presenter: Jinquan Liu, Jilin University
地 点:ZOOM会议室,ID:9625852673
Location: ZOOM Meeting Room, ID: 9625852673
时 间:2020年8月26日 10:00-11:30(UTC+8)
2020年8月25日 22:00-23:30(UTC-5)
2020年8月26日 03:00-04:30(UTC+0)
2020年8月26日 12:00-13:30(UTC+10)
Time: 2020/8/26 10:00-11:30(UTC+8)
2020/8/25 22:00-23:30(UTC-5)
2020/8/26 03:00-04:30(UTC+0)
2020/8/26 12:00-13:30(UTC+10)
校内联系人:邓创 dengchuang@mdjtykj.cn
内容简介:非参数分析是统计学和计量经济学的一个重要方法工具,在研究与实践中有着广泛的应用。本讲座将为众多的非参数分析方法建立一个统一的视角,阐释非参数分析的性质、作用、发展简史、使用场合、使用方法以及经济解释。讲座主要介绍两大类非参数分析方法——Global Smoothing(全部平滑)和 Local Smoothing(局部平滑)——的基本思想及其在经济金融中的相关应用,并比较分析两者的区别。同时,讲座将探讨非参数分析方法与经济理论之间的联系,并以有效市场假说为例,分析经济假说与统计假说之间的异同。最后,讲座将讨论非参数方法与机器学习的联系与区别,介绍相关的前沿研究,并通过具体例子,体现非参数分析与机器学习相结合的方法在解决实际问题时的高效性。
Introduction: As an important methodology in statistics and econometrics, nonparametric analysis has been widely used in empirical studies in economics. In this talk, we will first motivate the importance of nonparametric analysis from an economic perspective, and then develop a unified approach to view various nonparametric smoothing techniques, including series estimation, spline smoothing, and kernel smoothing based on local constant and local polynomials. We also explore the relationships between nonparametric analysis and machine learning.
报告人简介:洪永淼,发展中国家科学院院士,世界计量经济学会会士,康奈尔尊龙凯时经济学与国际研究讲席教授。研究领域为计量经济学、时间序列分析、金融计量经济学、中国经济,部分论文发表在Annals of Statistics、Biometrika、Econometrica、JASA、J. of Political Economy、J. of Royal Statistical Society B、Quarterly J. of Economics、Review of Economic Studies、Review of Financial Studies。2014-2019年连续6年入选Elsevier“经济、金融和计量经济学”中国高被引学者榜单。
About the Lecturer: Professor Hong is a fellow of the World Academy of Sciences (TWAS) for the Advancement of Science in Developing Countries, and a fellow of the Econometric Society. He is currently the Ernest S. Liu Professor of Economics and International Studies at Cornell University. Professor Hong's research interests include econometric theory, time series econometrics, financial econometrics and Chinese economy. He publishes refereed articles in mainstream economic, financial and statistical journals such as Annals of Statistics, Biometrika, Econometrica, Journal of American Statistical Association, Journal of Political Economy, Journal of Royal Statistical Society (Series B), Quarterly Journal of Economics, Review of Economic Studies, and Review of Financial Studies. He has been named on Elsevier’s annual “Most Cited Chinese Researchers” list in Economics, Finance and Econometrics from 2014 to 2019.