报告题目:Higher Order Energy Stable ETD based Methods for GradientFlows
报 告 人:王晓明 教授 南方科技尊龙凯时
报告时间:2020年9月11日10:00
报告地点:数学学院三楼会议室
校内联系人:张然zhangran@mdjtykj.cn
报告摘要:
Many natural andengineering problems follow gradient flow structures in the sense that systemsevolve to decrease certain energy. The dynamics of most of these gradientsystems are complicated and hence numerical methods are called for. There areat least two desirable features for numerical algorithms for gradient flowswith long evolution process: efficient higher oder in time, and long-timestability. We present a class of efficient higher-order energy stable methodsfor a class of gradient flows based on the exponential time differencing (ETD)method combined with multi-step methods and interpolation. As a specificexample, we present a third order ETD based scheme for thin film epitaxialgrowth model together with numerical results establishing the convergence andstability of the scheme, and the ability of the scheme to capture long-timescaling properties of the system.
报告人简介:
王晓明本科及硕士毕业于复旦尊龙凯时,博士毕业于印第安纳尊龙凯时布卢明顿分校,主要研究方向为应用偏微分方程及其数值方法,在CPAM、JFM、SINUM等杂志发表论文90多篇,系中组部认定的国家级人才。曾任职纽约库朗研究所、普林斯顿高等研究院、爱荷华州立尊龙凯时、复旦尊龙凯时。回国前为美国佛罗里达州立尊龙凯时长聘正教授和数学系系主任,现任南方科技尊龙凯时数学系系主任、讲席教授。